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Abstract
We analyse in mathematical detail, within the framework of the QMUPL model
of spontaneous wavefunction collapse, the von Neumann measurement scheme
for the measurement of a 1/2 spin particle. We prove that, according to the
equation of the model, (i) throughout the whole measurement process, the
pointer of the measuring device is always perfectly well localized in space;
(ii) the probabilities for the possible outcomes are distributed in agreement
with the Born probability rule; (iii) at the end of the measurement the state of
the microscopic system has collapsed to the eigenstate corresponding to the
measured eigenvalue. This analysis shows rigorously how dynamical reduction
models provide a consistent solution to the measurement problem of quantum
mechanics.

PACS number: 03.65.Ta

1. Introduction

In standard textbooks on quantum mechanics, e.g. in [1], one can find the following axioms
defining the quantum theory:

Axiom 1 (states). A Hilbert H space is associated with each physical system and the state
of the system is represented by a vector |ψ〉 in H. (In the following, we will always assume
vectors to be normalized.)

Axiom 2 (observables). To any observable quantity of the system is associated with a self-
adjoint operator in H. The only possible outcomes of a measurement of an observable are the
eingenvalues of the associated operator.

Axiom 3 (Schrödinger equation). Given |ψ0〉 the state of the system at an initial time
t0 = 0, its state at any subsequent time t is represented by |ψt 〉, which is the solution of the
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Schrödinger equation:

ih̄
d

dt
|ψt 〉 = H |ψt 〉, (1)

for the given initial condition; the self-adjoint operator H is the Hamiltonian operator associated
with the system.

Axiom 4 (Born rule). Let |ψ〉 be the vector describing the state of the system at a given time;
then the probability that the outcome of a measurement of an observable A at that time is one
of the values an belonging to the spectrum of A, is given by the Born probability rule:

P[an] = 〈ψ |Pn|ψ〉, (2)

where Pn is the projection operator associated with the eigenmanifold of the operator A

corresponding to the eigenvalue an.

Axiom 5 (wave-packet reduction). At the end of a measurement process the state of the
system changes according to the rule:

|ψ〉 −−−−→
[after measurement]

Pn|ψ〉
‖Pn|ψ〉‖ , (3)

where Pn is the projection operator associated with the outcome an of the measurement.
As well known, the last axiom gives rise to the measurement problem in quantum

mechanics, because of which the theory, as it stands, cannot be considered a consistent
description of physical phenomena. Many tentative solutions have been suggested, among
which dynamical reduction models are one of the few promising proposals; their general
structure has been already fully described in the past literature [2, 3]; here we limit ourselves
to list the axioms defining them (at the non-relativistic level):

Axiom A (states). A Hilbert H space is associated with each physical system and the state of
the system is represented by a (normalized) vector |ψ〉 in H.

Axiom B evolution (continuous version). Given the system initially in a state described by
the vector |ψ0〉, its state at any subsequent time t is represented by |ψt 〉, which solves the
following stochastically modified Schrödinger equation:

d|ψt 〉 =
[
− i

h̄
H dt +

√
λ(A − 〈A〉t ) dWt − λ

2
(A − 〈A〉t )2 dt

]
|ψt 〉, (4)

where Wt is a standard Wiener process defined on a probability space (�,F, P), while
〈A〉t ≡ 〈ψt |A|ψt 〉 is the quantum average value of the operator A, which is a suitably chosen
(in this case, self-adjoint) operator; λ is a positive constant controlling the strength of the
collapse4.

Axiom C (ontology). Let ψ(x1, x2, . . . , xN) ≡ 〈x1, x2, . . . , xN |ψ〉 the wavefunction for a
system of N particles (which for simplicity we take to be scalar) in configuration space. Then

µ
(n)
t (xn) ≡ mn

∫
d3x1 . . . d3xn−1 d2xn+1 . . . d3xN |ψ(x1, x2, . . . , xN)|2 (5)

represents the density of mass5 of the nth particle of the system, to which a total mass mn is
associated [4, 5].
4 Equation (4) can be generalized in different directions [2, 3]; however, its general structure has to be preserved in
order for the model to provide a solution to the measurement problem.
5 In the subsequent sections, for simplicity’s sake, we will not make reference to the mass density function anymore,
but we will only keep track of the evolution of the wavefunction; however it should be clear that, in order to be fully
rigorous, all statements about the properties of physical systems should be phrased in terms of their mass–density
distribution, not in terms of the wavefunction.
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Axiom A is equal to 1, while B replaces 3. Indeed, B embodies 3, meaning with this
that a sensible choice for λ and A can be made such that equation (4) practically reduces to
equation (1) when a microscopic quantum system is taken into account (see [6] for a recent
and exhaustive review of the subject). The remarkable property of collapse models is that also
the other axioms of quantum mechanics derive from B (and C, of course): the aim of this paper
is to show how axioms 4 and 5 derive from axiom B, while in a future paper we will discuss
how axiom 2 also derives from B. To be more precise, following the previous work of [7], we
here analyse in mathematical detail, within the framework of a specific dynamical reduction
model, a von Neumann type of measurement scheme, in which a microscopic system interacts
with a macroscopic apparatus devised in such a way to measure one or more properties of the
micro-system. We will show, giving also precise estimates, that

(1) whichever the initial state of the microscopic system, throughout the entire measurement
process the apparatus has a definite position in space, its wavefunction being always
extremely well localized;

(2) the only possible outcomes correspond to those given by standard quantum mechanics,
with probability almost equal to 1;

(3) the probability of getting a certain outcome is given by the Born probability rule within
an exceedingly high degree of approximation;

(4) after the measurement, the state vector of the microscopic system collapses to a state which
practically coincides with the eigenstate of the measured observable, corresponding to the
eigenvalue which has been observed.

Needless to say, these properties were already known since very long time, and indeed
they represent the very motivation behind the original GRW model [8] and its subsequent
generalizations, and the reason for its success; our goal here is to derive them in a rigorous
way from the equations of a specific model of wavefunction collapse.

The paper is organized as follows. In section 2 we will introduce the measurement model
our analysis is based upon, and we will discuss its physical features. In section 3 we will study
the special case in which the microscopic system has been prepared in an eigenstate of the
operator associated with the observable the model is devised to measure, while in section 4
we will analyse in full detail the case of an arbitrary initial state. In the concluding section 5
we will summarize the features of our model and draw our final conclusions.

2. The measurement model

We begin our discussion by presenting the measurement model we will use in the following
sections: the setup consists of a microscopic system S interacting with a macroscopic system
A which acts like a measuring apparatus; both systems are described in quantum mechanical
terms. Here below we give the details.

2.1. The microscopic system

We consider a single measurement process, in which the experimenter is able to distinguish
among a finite set of outcomes. Accordingly, we assume that the microscopic system S can
be described, for what concerns the measurement process, by a finite-dimensional complex
Hilbert space. For the sake of simplicity, and without loss of generality, we can consider
the simplest case: HS = C2, because the generalization of what follows to Cn is quite
straightforward. Since the most general self-adjoint operator O acting on C2 can be written as

O = o+|+〉〈+| + o−|−〉〈−|, (6)
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where |+〉 and |−〉 are the eigenstates of O, while o+ and o− are its two real eigenvalues, for
definiteness and with no loss of generality, in what follows we will take o± = ±h̄/2 and O to
be the z-component of the spin, Sz, of a 1/2 spin particle.

2.2. The measuring apparatus

We take the following model for the measuring apparatus A, which is general enough to
describe all interesting physical situations: we assume that the apparatus consists of a fixed
part plus a pointer moving along a graduate scale, in such a way that different positions of
the pointer along the scale correspond to different possible outcomes of the measurement. To
simplify the analysis, we study the evolution of the centre of mass of the pointer only, and
disregard all other macroscopic and microscopic degrees of freedom; accordingly, the pointer
will be treated like a macroscopic quantum particle of mass m moving in one dimension only,
whose state space is described by the Hilbert space HA = L2(R).

2.3. The dynamics

We assume that the pointer of A undergoes a spontaneous collapse mechanism according
to the Quantum Mechanics with Universal Position Localization (QMUPL) model first
introduced in [9] and subsequently analysed in [10] (see also references therein), while
the microscopic system S evolves according to the standard Schrödinger equation, since,
as typical of dynamical reduction models, the stochastic collapse terms have very little effects
on microscopic quantum systems. Accordingly, we take for the evolution equation of the
composite S + A system the following stochastic differential equation6 (SDE) defined in the
Hilbert space H = HS ⊗ HA := C2 ⊗ L2(R):

d |�t 〉 =
[
− i

h̄
Ht dt +

√
λ (q − 〈q〉t ) dWt − λ

2
(q − 〈q〉t )2 dt

]
|�t 〉 , (7)

which is precisely of the form (4), where Ht is the (time dependent) standard Hamiltonian
operator of the composite system, and q is the position operator associated with the centre of
mass of the pointer.7 In the following we will use capital letters (�,�, . . .) to denote a state
vector for the composite S + A system, and lower case letters (ψ, φ, . . .) to denote a state
vector referring to the pointer alone.

As discussed in [10] we take for the constant λ appearing in (7)

λ � m

m0
λ0, (8)

with m0 � 1.7 × 10−27 kg being a reference mass of order of a nucleon mass and λ0 �
10−2 m−2 s−1. For definiteness, let us consider a pointer of mass m = 1 g (i.e., a pointer made
of an Avogadro number of nucleons), and let us define, for later convenience, the quantities

ω := 2

√
h̄λ

m
� 5.0 × 10−5 s−1 and σq :=

√
h̄

mω
� 4.6 × 10−14 m. (9)

We take the Hamiltonian Ht to be of the form Ht = HS + HA + HINT. The first term is the
quantum Hamiltonian for the microscopic system: we assume that the time scale of the free
evolution of the microscopic system is much larger than the characteristic time scale of the
experiment (‘instantaneous measurement’ assumption); accordingly we take HS to be the null

6 See [11] and [12] for theorems on the existence and uniqueness of solution for this type of equation.
7 Thus, strictly speaking, we should write IS ⊗ q for the position operator for the pointer, where IS is the identity
operator in HS . We avoid such a way of writing, when no confusion arises.
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operator. The second term is the quantum Hamiltonian of the pointer, which we take equal
to that of a non-relativistic free quantum particle of mass m: HA = p2/(2m), where p is the
momentum operator.

Finally, we assume the interaction term HINT between the two systems to be of the von
Neumann type, and devised in such a way to measure the spin operator Sz:

HINT(t) = κ
T
t Sz ⊗ p, (10)

where κ is a coupling constant and 
T : t 	→ 
T
t is a T-normalized,8 non-negative, real valued,

function of time, identically equal to zero outside a given interval of the form (t0, t0 + T ), i.e.,
outside the time interval of length T, say T = 1 s, during which the experiment takes place;
we choose the time origin in such a way that the experiment begins at t0 = 0 s. As it is well
known, HINT generates the following type of evolution, depending on the initial state of the
micro-system S:

[c+|+〉 + c−|−〉] ⊗ |φ0〉 	→ c+|+〉 ⊗ |φ+〉 + c−|−〉 ⊗ |φ−〉, (11)

where |φ±〉 are final pointer states spatially translated with respect to the initial state
∣∣φ0

〉
by

the quantity ±(h̄/2)κT .
The strength of the coupling constant κ has to be chosen in such a way that the distance

h̄κT between the initial state |φ0〉 of the pointer and any of the two final states |φ±〉 is
macroscopic; for definiteness, let us choose h̄κ = 1 cm s−1, so that h̄κT = 1 cm.

2.4. The initial state

We take the initial states of the microscopic system S and of the macroscopic apparatus A
to be completely uncorrelated, as it is customary and appropriate for the description of a
measurement process. Accordingly, we assume the initial state of the total system S +A to be

[c+|+〉 + c−|−〉] ⊗ |φ0〉, (12)

where |φ0〉 describes the ‘ready’ state of the macroscopic apparatus A.
Regarding the initial state |φ0〉 of the pointer, some considerations have to be done. In

[10] it has been shown that, according to equation (7), the wavefunction for the centre of mass
of an isolated quantum system reaches asymptotically (and very rapidly, for a macro-object)
a Gaussian state of the form

φG
t (x) = 4

√
1

2πσ 2
q

exp

[
−1 − i

4σ 2
q

(x − x̄t )
2 + ik̄t x

]
, (13)

(modulo a time-dependent global phase factor) with σq defined as in equation (9). For later
reference, let us observe that the dispersion of the Gaussian function of equation (13) in
momentum space is

σp = h̄√
2σq

� 1.6 × 10−21 kg m s−1, (14)

quite close to the minimum allowed by Heisenberg’s uncertainty relation, and that the centres
of φG

t in position and momentum space are given by x̄t and h̄k̄t , respectively.

8 By a T-normalized function, we just mean∫ +∞

−∞

T

t dt =
∫ t0+T

t0


T
t dt = T .

Note that 
T
t depends also on the initial time t0; we will avoid to indicate it explicitly, when non-confusion arises.
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In our measurement model, we assume that the pointer is isolated for the time prior to
the experiment; during this time, as shown in the past literature, its wavefunction converges
rapidly towards a state close to (13), which we therefore assume to be the initial state of the
pointer. To summarize, we take as the initial state of the composite system S + A the ket

|�0〉 = [c+|+〉 + c−|−〉] ⊗ |G, 0〉, (15)

where 〈x|G, 0〉 is of the form (13). We choose the natural reference frame where the pointer
is initially at rest, so that k̄0 = 0 m−1, with the origin set-up in such a way that x̄0 = 0 m.

3. Measurement of an eigenstate

We begin our study of the model by looking for the solution of equation (7) satisfying the
initial condition∣∣�±

0

〉 = |±〉 ⊗ |G, 0〉 , (16)

where the symbol ± means that the state |±〉 is either |+〉 or |−〉, i.e., an eigenstate of the
operator Sz. We will show that, in this special case, the state of the microscopic system does
not change in time, while the pointer moves along the scale so to give the correct outcome of
the measurement.

3.1. The linear equation

Following the standard procedure outlined e.g. in [10] we pass from the nonlinear equation (7)
to the associated equation

d |�t 〉 =
[
− i

h̄
Ht dt +

√
λq dξt − λ

2
q2 dt

]
|�t 〉 , (17)

where ξt is a standard Wiener process defined on the probability space (�,F, Q), the measure
Q being a new probability measure chosen in such a way that the probability measure P

previously introduced is generated from Q by the martingale ‖�t‖2. The Wiener process ξt

of equation (17) is related to the Wiener process Wt of equation (7) via Girsonov’s rule [13]:

dWt = dξt − 2
√

λ〈q〉t dt. (18)

It is easy to prove that a vector of the form∣∣�±
t

〉 = |±〉 ⊗ ∣∣φ±
t

〉
(19)

solves equation (17), for the initial condition (16), if the wavefunction φ±
t (x) := 〈

x
∣∣φ±

t

〉
solves

the following linear SDE, which involves the apparatus degrees of freedom alone:

dφ±
t (x) =

[(
ih̄

2m

d2

dx2
∓ h̄κ

2

T

t

d

dx

)
dt +

√
λx dξt − λ

2
x2 dt

]
φ±

t (x). (20)

3.2. The solution and its properties

The solution of equation (20) for the given initial condition is the Gaussian wavefunction

φ±
t (x) = exp

[
−αt

(
x − x̄±

t

)2
+ ik̄±

t x + γ ±
t + iθ±

t

]
, (21)

whose parameters αt ∈ C, and x̄±
t , k̄±

t , γ ±
t , θ±

t ∈ R (of obvious meaning) satisfy the following
system of SDE [10]:



The quantum theory of measurement within dynamical reduction models 9865

dαt =
(

λ − 2ih̄

m
α2

t

)
dt (22)

dx̄±
t =

(
h̄

m
k̄±
t ± h̄

2
κ
T

t

)
dt +

√
λ

2αR
t

{
dξt − 2

√
λx̄±

t dt
}

(23)

dk̄±
t = −

√
λ

αI
t

αR
t

{
dξt − 2

√
λx̄±

t dt
}

(24)

dγ ±
t =

(
λ
(
x̄±

t

)2
+

h̄

m
αI

t +
λ

4αR
t

)
dt +

√
λx̄±

t

{
dξt − 2

√
λx̄±

t dt
}

(25)

dθ±
t =

(
− h̄

2m

(
k̄±
t

)2 − h̄

m
αR

t +
λαI

t

4
(
αR

t

)2 ∓ h̄κ

2

T (t)k̄±

t

)
dt +

√
λ

αI
t

αR
t

x̄±
t

{
dξt − 2

√
λx̄±

t dt
}
,

(26)

where we have denoted by zR (zI) the real (imaginary) part of the complex number z.
Equations (25) and (26) are of no particular interest in this simple situation, because

they just describe the time evolution of the irrelevant norm and global phase of the Gaussian
solution. Equation (22) is independent of equations (23)–(26); it is deterministic, and easily
solved by separation of variables:

αt = 1 − i

4σ 2
q

tanh

(
ωt

1 − i
+ c0

)
, (27)

where c0 sets the initial condition. Equation (27) determines the time evolution of the spread in
position and momentum of the Gaussian wavefunction. In our case, given the initial condition
α0 = (1 − i)/4σ 2

q , it follows that αt ≡ (1 − i)/4σ 2
q for all times (i.e., we can set αR

t ≡ 1/4σ 2
q

and αI
t ≡ −1/4σ 2

q in equations (23)–(26)): as expected, the position and momentum spreads
of the wavefunction of the pointer do not change in time, and remain identically equal to,
respectively, σq and σp.

For what concerns equations (23) and (24), which do not depend on equations (25) and
(26), their solution describes the time evolution of the mean value in position and momentum
of the Gaussian wavefunction. We have to characterize the stochastic properties of the solution
with respect to the physical probability measure P, i.e. we need to go back to the original noise
Wt via Girsanov’s rule (18), which in this case is very easy, because for a wavefunction like
(21) we simply have 〈q〉t = x̄±

t for all times, so that all we have to do is to write dWt in place
of the curly braces {· · ·} in equations (23) and (24):

dx̄±
t =

(
h̄

m
k̄±
t ± h̄κ

2

T

t

)
dt + σq

√
ω dWt (28)

dk̄±
t = σp√

2h̄

√
ω dWt, (29)

where we have also taken into account that αt = (1 − i)/4σ 2
q for any t � 0. Let us call

∣∣�±
t

〉
the normalized physical solutions:

∣∣�±
t

〉 ≡ ∣∣�±
t

〉/∥∥∣∣�±
t

〉∥∥, with
∣∣�±

t

〉
given by equation (19);

taking also into account that x̄0 = 0 m, and k̄0 = 0 m−1, we find the following results.

(1) According to equation (29), the average value of the peak of the Gaussian wavefunction
in momentum space, 〈p〉±t := 〈

�±
t

∣∣p∣∣�±
t

〉 ≡ h̄k̄±
t , does not evolve in time:

EP

[〈p〉±t
] = p̄±

0 = 0 kg m s−1. (30)
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(2) By equations (28) and (29), the average value of the peak in position space 〈q〉±t :=
〈�±

t |q|�±
t 〉 ≡ x̄±

t of the Gaussian wavefunction evolves in time according to

EP

[〈q〉±t
] = ±h̄κ

2

∫ t

0

T

t ′ dt ′. (31)

Equation (31) shows that, when the measurement begins, EP[〈q±
t 〉] moves towards the

right or the left according to the initial state of the microscopic system S, reaching the
final value (at the end of the measurement)

EP

[〈q〉±t
] = ±h̄κT

2
= ±0.5 cm for t � T . (32)

(3) The variance VP[〈q〉±t ] ≡ EP[〈q〉±t − EP[〈q〉±t ]]2 associated with the motion of 〈q〉±t is
equal to the variance computed in [10] (see section VII B), which, for αt ≡ (1 − i)/4σ 2

q ,
is given by9:

VP

[〈q〉±t
] = σ 2

q

[
ωt +

(ωt)2

2
+

(ωt)3

12

]
; (33)

with our choices for the parameters, we have VP

[〈q〉±t
]

� VP

[〈q〉±T
] � 1.1 × 10−31 m2,

for any t � T .

From the above results we can derive the following important conclusions:

• Due to the smallness of its variance, the motion of the peak 〈q〉±t of the Gaussian
wavefunction for the c.m. of the pointer is practically deterministic and equivalent to
the motion of EP

[〈q〉±t
]
, the fluctuations around the mean being so tiny that they can be

safely ignored. E.g., the probability for 〈q〉±t to lie outside an interval of width 
 centred
in EP

[〈q〉±t
]

can be estimated by using Čebičev’s inequality; for 
 = 10−5 cm, we have

P
[∣∣〈q〉±t − EP

[〈q〉±t
]∣∣ � 
/2

]
� 4

VP

[〈
q±

T

〉]

2

� 4.2 × 10−17, for any t � T , (34)

a vanishingly small probability.
• As such, and because of equation (31), the peak 〈q〉±t evolves in time as follows:

〈q〉±t =




±h̄κ

2

∫ t

0

T

t ′ dt ′ t � T (+ negligible fluctuations)

±h̄κT

2
= ±0.5 cm t � T (+ negligible fluctuations)

(35)

This means that, according to the initial state of the micro-system, the pointer moves in
a practically deterministic way either towards left or towards right, with respect to the
initial ready state, displaying in this way the outcome of the measurement.

• During the measurement, the state of the micro-system does not change.

This is precisely the expected behaviour both for the microscopic system as well as for the
macroscopic pointer, when the initial state is given by (19), for an ideal measurement scheme
as the one of von Neumann here analysed.

9 We correct in this way a typo contained in equation (93) of [10].



The quantum theory of measurement within dynamical reduction models 9867

4. Measurement of a superposition

Let us now consider the general case where the initial state |si〉 of the microscopic system S
is not an eigenstate of Sz, but a superposition of eigenstates of the form

|si〉 = c+|+〉 + c−|−〉 (|c+|2 + |c−|2 = 1); (36)

the global initial condition for the micro-system and the apparatus then is

|�0〉 = [c+|+〉 + c−|−〉] ⊗ |G, 0〉 . (37)

As in the preceding subsection, we first solve the linear equation, and next move to the nonlinear
one. Due to the linearity of equation (17), its solution, with the given initial condition (37), is

|�t 〉 = |+〉 ⊗ ∣∣φ+
t

〉
+ |−〉 ⊗ ∣∣φ−

t

〉
, (38)

where the wavefunctions
∣∣φ+

t

〉
and

∣∣φ−
t

〉
, in the position representation, are of the form (21)

and the parameters αt , x̄
±
t , k̄±

t , γ ±
t , θ±

t solve equations (22)–(26), with the obvious choice of
sign and with initial conditions:

α0 = 1 − i

4σ 2
q

, x̄±
0 = 0 m, k̄±

0 = 0 m−1, γ ±
0 = ln |c±|, θ±

0 = Arg[c±]

(39)

(of course we now assume that c± �= 0).
Since the time evolution of the parameters αt is governed by equation (22) which, as we

have already remarked, is deterministic and decoupled from the evolution equations (23)–(26)
for the remaining parameters, we observe first of all that the evolution of the spreads in position
and momentum of the two Gaussian functions

∣∣φ+
t

〉
and

∣∣φ−
t

〉
does not change with respect to

the case analysed in the previous section. Accordingly, we have αt ≡ (1 − i)/4σ 2
q for all

times, so that the spreads of the two wavefunctions do not evolve and remain identically equal
to the asymptotic values σq and σp.

4.1. The deterministic evolution of the distances in position and momentum between the two
Gaussian components

Contrary to the preceding case, moving from the solution of the linear equation to the solution
of the nonlinear one is not immediate, since Girsanov’s rule (18) involves the quantum average
〈q〉t , which in this case turns out not to be a trivial function of the parameters controlling the
two Gaussian components; namely, one finds that10

〈q〉t = x̄+
t e2γ +

t + x̄−
t e2γ −

t

e2γ +
t + e2γ −

t

. (40)

Of course, this is an entirely expected difficulty, due to the essential nonlinearity inherent
to collapse models; to proceed in the analysis of the problem, it is convenient first of all to
analyse the evolution of the distance between the maxima of the two Gaussian functions

∣∣φ+
t

〉
and

∣∣φ−
t

〉
, both in position as well as in momentum space, and subsequently of their relative

weights.
Following the path outlined in [10], let us consider the differences Xt := x̄+

t − x̄−
t and

Kt := k̄+
t − k̄−

t , which express at each instant the distance in position and (modulus h̄)
momentum space between the centres of the two Gaussian functions

∣∣φ+
t

〉
and

∣∣φ−
t

〉
. From

10 In equation (40) no contribution comes from the overlapping between the two Gaussian components, since each
component is coupled to one of the two orthogonal spin state |±〉, which make the ‘off-diagonal’ terms of the scalar
product vanish.
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equations (23) and (24), keeping in mind that in our case we have αR
t ≡ 1/4σ 2

q and
αI

t ≡ −1/4σ 2
q for all times, we get the following deterministic system for Xt and Kt :

d

dt

[
Xt

Kt

]
=

[ −ω h̄/m

−2λ 0

] [
Xt

Kt

]
+

[
h̄κ
T

t

0

]
; (41)

since it does not depend on the noise, it is insensitive to the change of measure and holds true
also for the nonlinear equation (7).

The solution of the above system depends of course on the specific choice for the function

T

t ; a simple reasonable choice is the following:


T
t =

{
1 t ∈ [0, T ]
0 else,

(42)

which, according to equation (35), means that, with restriction to the situation analysed in the
previous section, during the measurement the pointer moves at a constant speed either towards
the left or towards the right, depending on the initial state of the micro-system. According to
this choice, Xt , given the initial condition X0 = 0 m, evolves in time as follows:

Xt =




2h̄κ

ω
e−ωt/2 sin

ω

2
t for 0 � t � T ,

2h̄κ

ω
e−ωt/2

[
sin

ω

2
t − eωT/2 sin

ω

2
(t − T )

]
for t � T .

(43)

Since ω−1 � 2.0 × 104 s is a very long time compared to the measurement time, we can
meaningfully expand equation (43) to first order in ωt :

Xt �
{
h̄κt for 0 � t � T = (h̄κ)−1 = 1 s,

1 cm for T � t � ω−1 � 2.0 × 104 s.
(44)

As we see, the distance between the two peaks increases almost linearly in time, reaching
its maximum (1 cm) at the end of the measurement process, as predicted by the standard
Schrödinger equation; after this time, their distance remains practically unaltered for extremely
long times, and only for t � 2.0×104 s it starts slowly decreasing, eventually going to 0. Note
that such a behaviour, being determined by ω, does not depend on the mass of the pointer, thus
a larger pointer will not change the situation. The moral is that Xt behaves as if the reduction
mechanism were not present (as if λ0 = 0) so we have to look for the collapse somewhere
else.

As we shall discuss in the next subsection, the collapse occurs because, in a very short
time, the weight of one of the two Gaussian wavefunctions (|φ+

t 〉 or |φ−
t 〉) becomes much

smaller than the weight of the other component; this implies that, when the normalization of
the whole state is taken into account, one of the two components practically disappears, and
only the other one survives, the one which sets the outcome of the experiment. Of course, this
process is random and, as we shall prove, it occurs with a probability almost equivalent to the
Born probability rule.

4.2. The evolution equation governing the relative weight of the two Gaussian components

The relative damping between the two Gaussian components of equation (38) is measured by
the stochastic process �t = γ +

t − γ −
t : if, at a certain time t, it occurs that �t � 1, it means

that at the end of the experiment
∣∣φ−

t

〉
is suppressed with respect to

∣∣φ+
t

〉
, so that the initial state

(37) practically evolves to |+〉⊗ ∣∣ψ+
t

〉
(remember that

∣∣ψ±
t

〉 = ∣∣φ±
t

〉/∥∥∣∣φ±
t

〉∥∥ are the normalized



The quantum theory of measurement within dynamical reduction models 9869

states); the opposite happens if �t � −1. To be quantitative, let us introduce a conveniently
large collapse parameter, say 35, and the following definition11:

Definition. The superposition (38) is suppressed when |�t | � 35, i.e., when either∥∥∣∣φ+
t

〉∥∥/∥∥∣∣φ−
t

〉∥∥ or its reciprocal is greater than e35 � 1.6 × 1015.

Using equation (25) and Girsonov’s transformation (18), we can write the following SDE
for �t in terms of the noise Wt associated with the nonlinear equation (7):

d�t = λXt

(
2〈q〉t − x̄+

t − x̄−
t

)
dt +

√
λXt dWt, (45)

with initial condition �0 = ln |c+/c−|. By using the expression (40) for 〈q〉t , we can rewrite
the above equation as follows:

d�t = λX2
t tanh �t dt +

√
λXt dWt. (46)

This is the result we wanted to arrive at, and we will devote the rest of the section at analysing
its physical content. To proceed further with the analysis, it is convenient to perform the
following time change [14],

t −→ st := λ

∫ t

0
X2

t dt ′, (47)

which allows us to describe the collapse process in terms of the dimensionless quantity s that
measures its effectiveness. Using equation (43), one can solve exactly the above integral and
compute s as a function of t. Such a function however cannot be inverted in order to get t from s.
To this end, we use the simplified expression (44) in place of the exact formula (43) to compute
the integral, an expression which, as we have seen, represents a very good approximation to
the time evolution of Xt throughout the whole time during which the experiment takes place
(alternatively, we may initially choose 
T

t in such a way that Xt evolves exactly like in (44),
at least from t = 0 to t = T ). Accordingly, we have

s ≡ st � λh̄2κ2

3
t3 � 2.0 × 1017(t/s)3 0 � t � T = 1 s, (48)

t ≡ ts � 3

√
3

λh̄2κ2
s � (1.7 × 10−6 3

√
s) s 0 � s � λh̄2κ2/3 = 2.0 × 1017. (49)

Note that, according to the above equations, the physical time t depends on s through the
inverse cubic root of λ, i.e. on the inverse cubic root of the mass of the pointer; this time
dependence of t on λ is important since, as we shall see, it will affect the collapse time.
We do not study the functional dependence between s and t for t � T since, as we shall soon
see and as we expect it to be, the collapse occurs at times much smaller than T.

Written in terms of the new variable s, equation (46) reduces to

d�s = tanh �s ds + dWs; (50)

this equation has been already analysed in [10], using the theorems of [14]; here we report the
main properties.

11 The choice made here for the collapse parameter is different from the one made in [10]. We find this new choice,
which at any rate is arbitrary, more convenient for the problem under study.
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4.2.1. The collapse time. According to the definition given before, a collapse occurs when
|�t | � 35; it would seem then natural to define the collapse time as the time when |�t | first
reaches the value 35. However, one has to face the event that |�t |, after having reached such
a value, immediately starts decreasing in a significant way, jeopardizing in this way the effect
of the collapse. To avoid such a possibility, we proceed as follows: we will compute the time
it takes for |�t | to reach a value larger than 35, let us say 50, and subsequently we will show
that, after having reached such a value, the probability that it gets back to a value below 35
is negligible. In this way we can be (almost) sure12 that, once the collapse has occurred, the
superposition never reappears.

Let us then consider the time S̄ = S̄(ω) when |�s | first reaches the value 50:

S̄ ≡ inf{s : |�s | � 50}; (51)

of course we assume that the initial state (36) is such that |�0| � 35, otherwise according to
our definition (as well as for all practical purposes) it would already be a reduced state, not a
physically meaningful superposition. It can be proven [10] that S̄ is finite with probability 1,
and that its average value and variance are given by the following expressions:

EP[S̄] = 50 tanh 50 − �0 tanh �0, (52)

VP[S̄] = F(50) − F(�0), F (x) = x2 tanh2 x + x tanh x − x2. (53)

Now, tanh 50 � 1−7.4×10−44 which is practically 1; let us also consider e.g. the worst case,
as far as the collapse mechanism is concerned, i.e. the case in which �0 = 0, which means
that the micro-state is initially in a equal weighted superposition of the two eigenstates. We
then have that EP[S̄] � 50 and VP[S̄] � 50.

S̄(ω) is a random variable, so we cannot tell exactly when the collapse occurs; since
however we want to be quite safe that it actually occurs, let us compute the probability that S̄

happens to be much greater than, e.g., 105 times its standard deviation. By a trivial application
of Čebičev’s inequality we have

P[|S̄ − EP[S̄]| � 105
√

VP[S̄] � 7.1 × 105] � 10−10. (54)

We can then conclude that, at time s = EP[S̄] + 105
√

VP[S̄] � 7.1 × 105, the collapse
has almost certainly occurred (with probability greater than 1 − 10−10) and that it is an
irreversible process (as we shall soon prove). Moving back from the effective time s to the
physical times t by using equation (48), we then define the collapse time as follows:

TC � 3

√
3(EP[S̄] + 105

√
VP[S̄])

λh̄2κ2
� 1.5 × 10−4 s : (55)

the collapse occurs within a time interval smaller than the perception time of a human observer.
The above formula shows also that, as expected, TC is proportional to the inverse cubic root
of the mass of the pointer (since λ is proportional to the mass): the bigger the pointer, the
shorter the collapse time. With our choice for λ0, even for a 1-g pointer the reduction occurs
practically instantaneously.

It is important to note that, at time TC � 1.5 × 10−4 s, the distance between the two
Gaussian components is approximately XTC

� 1.5 × 10−4 cm: this means that, with very
high probability, the collapse occurs before the two components have enough time to spread
out in space to form a macroscopic superposition. This means that, from the physical point of
view, there is no collapse of the wavefunction at all, since the wavefunction always remains
perfectly localized in space at any stage of the experiment. In any case, we will keep talking
of collapse of the wavefunction, meaning with it simply the event |�t | � 35.
12 Here, as well as in the rest of the paper, we use ‘almost sure’ in the physical sense of ‘with very high probability’,
not in the mathematical sense of ‘with the possible exception of a subset of measure 0’.
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4.2.2. The collapse probability. Let us call P+ the probability that �s hits the point +50
before the point −50, i.e. the probability that

∣∣φ+
s

〉
survives during the collapse process so that

the outcome of the measurement is ‘+h̄/2’. Such a probability turns out to be equal to [10]

P+ = 1

2

tanh 50 + tanh �0

tanh 50
; (56)

while the probability P− that �s hits the point −50 before the point +50, i.e. that the outcome
of the experiment is ‘−h̄/2’, is of course:

P− = 1

2

tanh 50 − tanh �0

tanh 50
. (57)

By taking into account that tanh 50 � 1 − 7.4 × 10−44 � 1, we can write, with extremely
good approximation,

P+ � 1

2
[1 + tanh �0] = e�0

e�0 + e−�0
= e2γ +

0

e2γ +
0 + e2γ −

0

= |c+|2, (58)

P− � 1

2
[1 − tanh �0] = e−�0

e�0 + e−�0
= e2γ −

0

e2γ +
0 + e2γ −

0

= |c−|2. (59)

We see that the probability of getting one of the two possible outcomes is practically equivalent
to the Born probability rule! On the one hand, this is an entirely expected results, since
collapse models have been designed precisely in order to solve the measurement problem
and in particular to reproduce quantum probabilities; on the other hand, it is striking that a
very general equation like equation (7), which is meant to describe both quantum systems as
well as macroscopic classical objects (i.e. all physical situations, at the non-relativistic level),
when applied to a measurement situation, provides not only a consistent description of the
measurement process, but also reproduces quantum probabilities with such a good precision.

4.2.3. Stability of the collapse process. We have already anticipated that, since �s evolves
randomly, there is the chance that, after having reached e.g. the value +50, i.e. after that the
wavefunction collapsed to the state |φ+〉, it becomes smaller than 50 instead of keeping
increasing, eventually getting closer and closer to 0. When such an event occurs, the
superposition of the two Gaussian wavefunctions, which was previously reduced, reappears
again, jeopardizing in this way the entire collapse process and localization properties of the
pointer. We now give an estimate of the probability for such an event to occur.

Let us call Q+ the probability that �s , after having reached the value +50 at time S̄, does
not go back to a value smaller 35:

Q+ := P

[
inf
s�S̄

�s � 35

]
; (60)

such a probability turns out to be [10]

Q+ � (1 + tanh 50)
tanh 15

1 + tanh 15
� 1 − 9.3 × 10−14, (61)

which is practically equal to 1: once a localization occurs, the superposition can de facto never
reappear.
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4.3. State vector after the collapse

At time t � TC the normalized sate vector |�t 〉 ≡ |�t 〉/‖|�t 〉‖, with |�t 〉 given in (38), is

|�t 〉 = |+〉 ⊗ |G+, t〉 + εt |−〉 ⊗ |G−, t〉√
1 + ε2

t

, (62)

where εt ≡ e−(γ +
t −γ −

t ) and the normalized Gaussian states 〈x|G±, t〉 are defined as follows:

〈x|G±, t〉 = 4

√
1

2πσ 2
q

exp

[
−1 − i

4σ 2
q

(
x − x̄±

t

)2
+ ik̄±

t x + iθ±
t

]
. (63)

Let us assume that the collapse occurred in favour of the ‘+h̄/2’ eigenvalue, i.e. in such a way
that �t � 35 for t � TC , with very high probability; it follows that

εt � e−35 � 6.3 × 10−16 ∀ t � TC, (64)

and we can write, with excellent accuracy,

|�t 〉 � |+〉 ⊗ |G+, t〉. (65)

We recover in this way the postulate of wave packet reduction of standard quantum mechanics:
at the end of the measurement process, the state of the micro-system is reduced to the eigenstate
corresponding to the eigenvalue which has been obtained as the outcome of the measurement,
the outcome being defined by the surviving Gaussian component (|G+, t〉 in this case). Note
the important fact that, according to our model, the collapse acts directly only on the pointer
of the measuring apparatus, not on the micro-system; however, the combined effect of the
collapse plus the von Neumann type of interaction is that the microscopic superposition of the
spin states of the micro-system gets rapidly reduced right after the measurement.

Note finally that, after the collapse, the states of the micro-system and of the pointer are
de facto factorized: as such, after the measurement process one can, for all practical purposes,
disregard the pointer and focus only on the micro-system for future experiments or interactions
with other systems, as it is custom in laboratories.

4.4. The end of the experiment

In this final subsection we study how, after the collapse, the ‘winning’ component (|G+, t〉 or
|G−, t〉) moves in space, i.e. how their centres x̄+

t or x̄−
t evolve in time, whether they move in

such a way to display the correct outcome of the measurement. To this purpose let us define

X̃t ≡ x̄+
t + x̄−

t , K̃t ≡ k̄+
t + k̄−

t , (66)

so that x̄+
t and x̄−

t as functions of Xt and X̃t are given by x̄+
t = (Xt + X̃t )/2 and

x̄−
t = −(Xt − X̃t )/2. From equations (23) and (24), taking also into account (40), one

finds out that X̃t and K̃t satisfy the following SDEs:

dX̃t = h̄

m
K̃t dt + ωXt tanh �t dt + 2

√
ωσq dWt, X̃0 = 0 m,

dK̃t = 2λXt tanh �t dt + 2
√

λ dWt, K̃0 = 0 m−1,

(67)

where Xt is given by equation (43). This is a nonlinear system, since it depends in a nonlinear
way on �t , which is also a stochastic process; as such (to our knowledge) the system cannot
be exactly solved. To circumvent this problem, let us consider the following two auxiliary
linear systems:

dX̃±
t = h̄

m
K̃±

t dt ± ωXt dt + 2
√

ωσq dWt, X̃±
0 = 0 m,

dK̃±
t = ±2λXt dt + 2

√
λ dWt, K̃±

0 = 0 m−1.

(68)
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(with an obvious meaning of the symbols), which have been obtained in the first case (+) by
replacing tanh �t with +1, and in the second case (−) by replacing tanh �t with −1. Clearly,
we have X̃−

t � X̃t � X̃+
t and K̃−

t � K̃t � K̃+
t for any t such that Xt � 0, which is true for all

the time during which the experiment takes place, and much longer. Such linear systems can
be easily solved; concerning X̃±

t , and after some tedious calculations one finds the following
time dependence for the mean:

EP

[
X̃±

t

] = ±
{−Xt + h̄κt for t < T ,

−Xt + h̄κT for t � T ,
(69)

and for the variance:

VP

[
X̃±

t

] = 4σ 2
q

[
ωt +

(ωt)2

2
+

(ωt)3

12

]
. (70)

We use the above results to approximate the time evolution of X̃t and thus of x̄+
t and x̄−

t , which
we are interested in. We consider separately the case t � TC (before the collapse) and t � TC

after the collapse: in the first case, we cannot control the behaviour of �t , thus the most we
can say is that |tanh �t | � 1, which has already been used to bound X̃t between X̃−

t and X̃+
t ;

in the second case, we know that with very high probability |tanh �t | � tanh 35, which is a
very strong bound.

Case 1, before the collapse: t � TC . Within this time interval, the two Gaussian components
|G+, t〉 and |G−, t〉 start separating, as Xt increases in time; in particular, at time t = TC ,
when the collapse has (almost certainly) occurred, we have

EP

[
X̃±

TC

] � ± 1
2h̄κωT 2

C � ±5.9 × 10−15 m, (71)

which has being obtained from equation (69) by expanding Xt , as given by equation (43), to
second order in ωt ; moreover, we have from equation (70):

VP

[
X̃±

TC

] � 4ωσ 2
q TC � 6.5 × 10−35 m2. (72)

This means that, on a macroscopic scale, X̃±
TC

� EP

[
X̃±

TC

]
; since XTC

� h̄κTC � 1.5 ×
10−6 m � EP

[
X̃±

TC

]
, and keeping in mind that X̃−

TC
� X̃TC

� X̃+
TC

, we can write, with very
high probability and very good approximation:

x̄+
TC

� + 1
2XTC

� + 1
2h̄κTC � +7.7 × 10−7 m, (73)

x̄−
TC

� − 1
2XTC

� − 1
2h̄κTC � −7.7 × 10−7 m. (74)

Accordingly, and as expected, the two components move symmetrically in opposite directions,
one towards right and the other towards left, but not fast enough for a macroscopic superposition
to occur, before the collapse enters into play and suppresses one of them.

Case 2, after the collapse: t � TC . Let us assume that the collapse is such that the outcome
‘+h̄/2’ is given; this means that almost certainly �t � 35,∀ t � TC . Given this, let us first
of all show that X̃t remains very close to X̃+

t , for very long times; then, by approximating X̃t

with X̃+
t , we will show how x̄+

t and x̄−
t evolve in time.

From equations (67) and (68), taking into account that tanh �t � −1, we find

K̃+
t − K̃t = 2λ

∫ t

0
Xt ′(1 − tanh �t ′) dt ′ � 4λ

∫ t

0
Xt ′ dt ′

= 8λh̄κ

ω2

[
1 − e−ωt/2

(
cos

ωt

2
+ sin

ωt

2

)]
� 2λh̄κt2 (75)
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and

X̃+
t − X̃t = h̄

m

∫ t

0

(
K̃+

t ′ − K̃t ′
)

dt ′ + ω

∫ t

0
Xt ′(1 − tanh �t ′) dt ′

� h̄

m

∫ t

0

(
K̃+

t ′ − K̃t ′
)

dt ′ + 2ω

∫ t

0
Xt ′ dt ′ � −2(Xt − h̄κt) � h̄κωt2. (76)

At time t = TC , we then have K̃+
TC

− K̃TC
� 2λh̄κT 2

C � 2.8 × 1012 m−1, and X̃+
TC

− X̃TC
�

h̄κωT 2
C � 1.2 × 10−14 m.

We use these results as initial conditions, at time TC , to find, by integrating once more
equations (67) and (68), and by using the two inequalities tanh �t � η ≡ tanh 35,∀ t � TC

and Xt � � � 1 cm, the following estimates:

K̃+
t − K̃t = K̃+

TC
− K̃TC

+ 2λ

∫ t

TC

Xt ′(1 − tanh �t ′) dt ′ � K̃+
TC

− K̃TC
+ 2λη�(t − TC) (77)

and

X̃+
t − X̃t � X̃+

TC
− X̃TC

+
h̄

m

∫ t

TC

(
K̃+

t ′ − K̃t ′
)

dt ′ + ω

∫ t

TC

Xt ′(1 − tanh �t ′) dt ′

� X̃+
TC

− X̃TC
+

h̄

m

(
K̃+

TC
− K̃TC

)
(t − TC) +

ω2

4
η�(t − TC)2 + ωη�(t − TC)

� ωh̄κT 2
C +

ω2

2
h̄κT 2

C(t − TC) +
ω2

4
η�(t − TC)2 + ωη�(t − TC)

� (1.2 × 10−14 + 2.9 × 10−19t + 5.0 × 10−42t2) m. (78)

We see that for very long times, by far much longer than the time during which the experiment
takes place, the distance between X̃TC

and X̃+
TC

remains small, so small that we can replace
X̃TC

with X̃+
TC

for all practical purposes.
On the other hand, X̃+

TC
is, on a macroscopic scale, very close to its average value EP

[
X̃+

t

]
,

its variance, as given by equation (70), being extremely small; accordingly we have

x̄+
t = Xt + X̃t

2
� Xt + X̃+

t

2
� Xt + EP

[
X̃+

t

]
2

=




+
h̄κt

2
t < T ,

+
h̄κT

2
t � T ,

(79)

which is the desired result: the pointer, represented in this case by |G+, t〉, moves at a constant
speed towards the right and stops at the position h̄κT /2, displaying in this way the correct
outcome.

To conclude the analysis, let us see what happens also to the other component, |G−, t〉,
which has been suppressed by the spontaneous reduction process. Its centre x̄−

t moves
approximately as follows:

x̄−
t = −Xt − X̃t

2
� −Xt − X̃+

t

2
� −Xt − EP

[
X̃+

t

]
2

�




−h̄κt

2
t < T ,

−h̄κT

2
T � t � ω−1,

+
h̄κT

2
t � ω−1.

(80)

i.e. the negligible Gaussian component moves to the left of the graduate scale, but then slowly
converges towards the other wavefunction.

As a final remark, we note that, at very long times of order ω−1 � 2.0 × 104 s, the
statistical fluctuations become relevant also on the macroscopic scale, thus approximating any
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actual value with its statistical average becomes less and less precise. However, times of order
ω−1 � 2.0 × 104 s are by far much longer than the time required for the experiment to end;
moreover, for such long times the assumption that the global system is isolated certainly loses
its validity; the measurement model should then be refined, in order to include so long time
scales.

5. Conclusions

In the present work we have analysed the quantum theory of measurement within the framework
of dynamical reduction models, resorting to the von Neumann-type scheme of measurement
process and to the QMUPL model of spontaneous wavefunction collapse. We have proven
the properties listed in the introductory section, showing in this way how the axioms 4 and
5 of standard quantum mechanics arise in quite a straightforward way from the dynamical
evolution law governing models of spontaneous wavefunction collapse.

We hope that our analysis makes clearer the mechanism with which dynamical reduction
models provide, at least at the non-relativistic level, such an accurate description of
measurement processes, and more generally of all physical situations.
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Appendix. A mistake corrected in [10]

When κ = 0, i.e. for a free particle of mass m moving according to the SDE:

dψt(x) =
[
− i

h̄

p2

2m
dt +

√
λ(q − 〈q〉t ) dWt − λ

2
(q − 〈q〉t )2 dt

]
ψt(x), (A.1)

the two equations (25) and (26) for γt and θt , respectively, become (we neglect the ±):

dγt =
(

λx̄2
t +

h̄

m
αI

t +
λ

4αR
t

)
dt +

√
λx̄t {dξt − 2

√
λx̄t dt} (A.2)

dθt =
(

− h̄

2m
k̄2
t − h̄

m
αR

t +
λαI

t

4(αR
t )2

)
dt +

√
λ

αI
t

αR
t

x̄t {dξt − 2
√

λx̄t dt}, (A.3)

which differ from the corresponding equations (12) and (13) of [10], in the first case for the
extra factor λ

/
4αR

t and in the second case for the factor λαI
t

/
4
(
αR

t

)2
. We correct in this way a

mistake made in [10], which however does not affect the other results contained in that paper.
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